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Hysteresis and metastability in the quenched turbulent dynamics of the complex
Ginzburg-Landau equation
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We consider the quenched dynamics of the two-dimensional complex Ginzburg-Landau equation in its
turbulent regime. We initialize the system in a frustrated state and observe how frustration affects the evolution
towards the turbulent state. This process is performed for parameter values where, for random initial condi-
tions, the system evolves into the turbulent state. We observe that the glassiness of the initial condition can
inhibit the occurrence of the absolute instability close to the critical point for that instability in parameter space.
Sufficiently far from the critical point, the turbulent state will develop, but only after spending considerable
time in a transient metastable state of fixed vortex density. The parameter distance from the critical point is
found to scale as an exponential of a power of the lifetime of the metastable state, and with a power exponent
depending on the ‘‘depth’’ of the original quench. The limiting regimes of shallow and deep quench are
identified by their respective values of the exponent, and the distinct mechanisms leading to the relaxation to
turbulence in each case are highlighted.
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A ubiquitous equation in the study of pattern formation
oscillatory, nonequilibrium media is the complex Ginzbur
Landau equation~CGL! @1–4#. This equation has been rec
ognized as essential to the study of slow modulations
oscillations in a continuous medium near a Hopf bifurcat
threshold@5#. Furthermore, it is a robust model for the d
scription of the dynamics of point defects in Rayleig
Bènard convection@6#, as well as a simple description for th
behavior of spiral waves in systems such as the Belous
Zhabotinsky~BZ! reaction@7#.

Extensive studies have been devoted to the dynam
scenarios in the different regimes of parameter space of
two-dimensional~2D! CGL ~see for example Refs.@5,8# and
references therein!. We will consider here the CGL in the
form

]A

]t
5A1~11 ib !DA2~11 ia !uAu2A, ~1!

whereA is a complex field and all other parameters are re
The possible instabilities~Benjamin-Feir, Eckhaus, convec
tive, and absolute 2D instabilities! are well documented~see
e.g., Ref.@8#!. It is also well known that the 2D CGL exhibit
three basic types of behavior~strongly suggested by numer
cal experiments and in reasonable agreement with exis
theory!, depending on parameter values:

~1! The system can be in a defect ‘‘turbulent’’ state
which topological defects~spiral waves or vortices! are con-
tinuously generated and destroyed in pairs, thus preser
the total topological charge.

~2! For a large range of parameter values, no vortices
be sustained in the asymptotic long time state, so eventu
all vortex pairs annihilate, leaving a quiescent pattern@8#.
This regime is often referred to as being phase turbulent@5#.
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~3! There is an intermediate ‘‘vortex glass’’ regime
which metastable cellular patterns emerge. In this long liv
non-equilibrium state, the vortices in a simulation@see, e.g.,
panel~a! of Fig. 1# can be seen to tremble slightly, howeve
they persist for very long times. One can also clearly disc
so-called ‘‘shock lines’’ defining the boundaries of the cel
These shocks are local maxima of the norm field (r5uAu)
created by the interference of the plane waves emitted by
defect cores@9–11#.

It is known that the transition to the defect turbulent sta
occurs through an absolute instability~AI !, see, e.g., Ref.@8#.
For random initial conditions~IC!, this means that the insta
bility is abruptly manifested beyond a critical pointac,1 , and
for a>ac,1 the system randomly generates and annihila
defect pairs. Fora,ac,1 , random IC eventually relax into a
frozen so-called ‘‘vortex-glass’’ state. It should be noted th
the ‘‘glassiness’’ in this case, rather than being created
disorder as in, e.g., spin-glass models, is a result of the
trinsic nonlinearity and competing length scales of t
model. Hence, as is also pointed out in a very interest
recent review paper on the subject@12#, it is of interest to
seek an understanding of the effects of such nonlinear
induced frustration in the dynamics of the system. The s
ond motivating factor for this work is the study of the inver
problem in Ref.@13#. The authors of Ref.@13# considered the
situation where a turbulent state~created numerically within
the turbulent regime! is used as IC within the glassy regim
They were able to show that below a critical point in t
glassy state regime of parameters, the system relaxes dir
to the vortex glass. Beyond the critical point, it supports
metastable quasiturbulent state that eventually relaxes
cellular pattern. The logarithm of the lifetime of this met
stable state was found to scale as a power of the distanc
parameter space from the critical point.
©2001 The American Physical Society22-1
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FIG. 1. ~Color! Panel~a!: frustrated 2D vortex pattern fora50.65,b520.75. Shown is the density plot of the norm fieldr5uAu of the
solution of Eq.~1! after the system has relaxed from its random initial conditions to the ground state ‘‘vortex glass’’ configuration. Pa~b!:
the previous configuration is now shallowly quenched toa50.9 and the frustrated initial condition will eventually ‘‘melt.’’ This panel show
a snapshot during this relaxation process. Panel~c!: here the resulting turbulent state is shown a long time after the initial quench. T
figures correspond to the regime ofd'1 ~shallow quench!.
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Here we investigate the effects of initial frustration on th
turbulent dynamics. Specifically, we conduct numeri
simulations within the intermediate regime of parameter v
ues and obtain frozen vortex configurations. Then, we init
ize the system with these configurations as IC but within
turbulent regime of parameter space and follow the ensu
dynamics. For our numerical studies of the time evoluti
we have used fourth order explicit and implicit methods. T
boundary conditions are periodic in both the spatial variab
x and y. The vortices are identified as local minima of th
norm field in the neighborhood of its zeros@14# and the
numerical calculations are performed along a horizontal
in the (a,b) parameter space. It should also be noted tha
of the presented results are fora.0. These can be suitabl
interpreted for values ofa,0 using the symmetries of th
model. Hence, we setb520.75 and varya. For random IC
we find that the AI occurs atac,1'0.855@15#.

We now initialize the system with random IC forain
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50.75,0.65,0.55, . . . ,0.15. The resulting final configuratio
is a frozen cellular pattern of the type shown in the top l
panel of Fig. 1, for, i.e.,ain50.65. We will use the subscrip
in for the initial ~i.e., the equilibrium frustrated configuratio
for this parameter value that will subsequently be used as
in the quenching simulations!. For the quenched values ofa
we will use the subscriptquen. Quenching the frozen state
of b520.75,a5ain to parameter valuesb520.75,aquen
.ac,1 , we observe the following:

~1! For aquen,ac,2 there is a hysteretic inhibition of the
turbulent phase. In particular, foraquenP(ac,1 ,ac,2) in our
simulations ofO(104–105) time units, the system does no
develop the defect turbulent state.ac,2 is dependent on the
‘‘depth’’ of the initial quench, i.e., how far the original pre
quenched valueain is from ac,1 . As expected and docu
mented by the data of Table I, if the system is frustrated
‘‘nearby’’ parameter values~shallow quench!, then it will be
more difficult for it to avoid the frustration and identify it
2-2
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HYSTERESIS AND METASTABILITY IN THE . . . PHYSICAL REVIEW E 65 016122
ground state@16#. Hence for a shallow quench, the hystere
interval is larger. As the quench deepens, the situation gra
ally approaches the one with random IC and the system
able to identify the AI already ataquen'ac,1 , without hys-
teretic effects. We conclude that initial frustration can free
the system into the glassy state, even when its ground sta
turbulent, displacing in parameter space the point of ma
festation of the AI.

~2! For aquen>ac,2 , the system will eventually be able t
avoid the frustration induced by the IC and reach the tur
lent ground state configuration. However, the initial glas
ness still has an effect on the dynamics. As is well known
the turbulent state the number of vortices in the system
very high and continuously fluctuating, while the same is
true for the fixed vortex density glassy configurations. Pr
ing the time evolution of the vortex number in the system
the case at hand~a typical result is shown in Fig. 2!, We
observe that the initial frustration induces a fixed number
vortices for a period of time. The time intervalT for which
the vortex number remains at the original value determi
by the IC, can be interpreted as the duration of a metast
state. Such a metastable state is not present for random I
which case a large number of vortices arise from the
almost immediately. This metastable state can be expla
as the by-product of the initial frustration of the configur
tion that necessitates an interval of time prior to the rel
ation of the system to its ground state, and its overcom
the glassiness in favor of this turbulent ground state. O
again the deeper the quench, the easier it becomes fo
system to find its way out. This can be interpreted in t
ways. For a fixed IC-relatedain , say 0.65, foraquen,1

TABLE I. Critical valuesac,2 for different ain .

ain 0.75 0.65 0.55 0.45 0.35
ac,2 0.875 0.875 0.865 0.855 0.855

FIG. 2. The number of vortices as a function of time for
typical quenching process beyondac,2 . For a well-determined pe
riod of time T ~this is how T is defined!, the system is in the
frustrated metastable state. Eventually, however, it relaxes to
ground state of defect turbulence.
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.aquen,2 with aquen,1;2.ac,2 , T2.T1. But also for a fixed
aquen.ac,2 for two differentain,1.ain,2 IC-related values of
ain (ain,1;2,ac,2), Taquen,ain,1

.Taquen,ain,2
. The above no-

tions suggest the interpretation of the parametera as a ‘‘tem-
perature’’ for the system. In this perspective, for a su
ciently energetic ‘‘thermal’’ quench, the system has enou
‘‘energy’’ to overcome the disorder-induced ‘‘energy bar
ers’’ and reach its ground state. It should also be emphas
that deeper quenches imply larger jumps in the steady v
of the modulus of the selected spiral waves. This sim
argument can also be used to justify the observed differen
between shallow and deep quenches.

~3! The distance ofaquen from the~new! critical pointac,2
scales as an exponential of a power of the lifetime of
metastable state. This type of relaxation behavior has b
observed in a number of glassy systems such as frustr
Josephson junction arrays~see, e.g., Ref.@17#! or semicon-
ducting materials~see, e.g., Refs.@18,19#!. In particular,

aquen2ac,2;exp@2~T/t!d#. ~2!

A typical manifestation of this scaling is shown in Fig. 3 fo
quenching fromain50.65. The values ofd,t depend again
on the ‘‘depth’’ of the initial quench. For the different value
of a5ain , the corresponding fitted values ofd are given in
Table II. It can be seen thatd increases asain is lowered~for

he

FIG. 3. Plot of log10(T) as a function of2 log10(a2ac) in a
semilogarithmic plot. The slopes of this line is s51/d and the
interceptp5 log10(t).

TABLE II. Values of d for different ain .

ain d

0.75 0.998
0.65 0.998
0.55 1.123
0.45 1.447
0.35 1.986
0.25 2.026
0.15 2.014
2-3
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FIG. 4. ~Color! The three panels are exactly analogous to those of Fig. 1 but for a deep quench.ain50.15 andd'2 for this case. It can
clearly be seen that the mechanism melting the pattern is different from the shallow quench case of Fig. 1.
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decreasing initial frustration!. It is interesting to note thatd is
always observed to lie between 1 and 2. In fact for the li
iting cases of shallow and deep quench, saturation of
value of d is observed to the corresponding limit (d51,d
52, respectively!. This suggests limits of unimolecular an
bimolecular type relaxation mechanisms. In fact, the diff
ent limits correspond to different relaxation mechanisms t
are the pathways for ‘‘melting’’ the cellular structure in th
shallow and the deep quench cases. In the numerical ex
ments it was also observed that the ‘‘half-life’’ timet is
larger for higherain ~data not shown!. The monotonic behav
ior here may not persist in the saturation limit. However,
the parameters are varied between the saturation limits~from
shallow to deep quench!, the variation is indeed monotonic
The above conclusions are in qualitative agreement with
intuition that the shallower the quench, the more effect
frustration will be in preventing the system from reaching
ground state, in agreement with the comments in the pr
ous paragraph. It should be noted here that the behavio
Eq. ~2! is a direct result of the initial frustration. An initia
perturbation~for random or nonfrustrated IC! will grow be-
yond the AI critical point asx t. This signifies that the time
needed for entering the turbulent regime isdt;u log10xu21. A
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leading order expansion shows@13# that log10x;(a2ac).
Hence one expects, based on this analysis, that

a2ac;T21, ~3!

for a random initial condition. The exponential behavior a
the delay, both in the manifestation of the AI as well as in t
identification of the turbulent ground state, can thus be na
rally attributed to the glassiness inherent to the IC of
system.

The elementary mechanism by which turbulence even
ally ‘‘melts’’ the initial cellular structure is shown in Figs. 1
and 4. In the case of shallow quench~well-formed cellular
structures! defects start forming initially at the corners of th
configuration~in the vicinity of the so-called edge defec
@11#!. Then, in a way reminiscent of the inverse procedu
~illustrated by Fig. 3 of Ref.@13#! of the procedure men
tioned in Ref.@11#, the turbulent rings of vorticity gradually
reduce the areas ‘‘shielded’’ by the larger defects. They ev
tually allow defect turbulence as they suppress the radi
the droplets of larger vortex shielded regions to zero. On
contrary, for a deep quench the initial configuration cons
of defect pairs and quartets rather than of a cellular struc
2-4
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HYSTERESIS AND METASTABILITY IN THE . . . PHYSICAL REVIEW E 65 016122
with individual defects well separated by shock lines. In t
case, the ‘‘melting’’ process resembles the process in R
@13#. The initially very narrow vortices start growing un
formly. The uniformity can be viewed in two ways. On th
one hand all vortices grow. However, the growth appear
be in turbulent droplets of uniformly increasing radius. The
eventually overwhelm the pattern, creating the defect tur
lent state. The relaxation path between the two satura
regimes follows the variation of the relative influence
these two distinct mechanisms.

We note that even though our results have been obta
along a horizontal line in the (a,b) parameter space, we hav
found the described scenario to be general for the quenc
into the turbulent regime of the 2D CGL. In particular, w
performed simulations along the vertical linea51.0, where,
for random IC, AI sets in atbc,1'20.495. Forbin520.4,
inhibition of the transition was observed untilbc,2'20.515.
Also, scaling similar to the one shown in Fig. 3 was o
served. The existence of such a general scenario is consi
with the implications of the existence of a similarity tran
formation @given by Eq. ~47! in Ref. @2# for the relevant
linearized homogeneous equation# which transforms the re
sults for the case ofb5” 0, to the caseb50 with a newã
5(a2b)/(11ab). This is merely an argument in suppo
~but, by all means, not a proof! of the genericity of the de-
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scribed scenario. We conclude that frustrated initial con
tions can affect the relaxation to the turbulent state. In p
ticular, they can move the critical point, causing a hystere
effect in the occurrence of the transition. Even when
transition does eventually take place, these effects tempo
delay its appearance compared to the random or nonf
trated IC case by inducing a metastable state of fixed vor
ity. Frustration is manifested through an exponential beh
ior of the parameter distance from the critical point as
function of a power of the lifetime of the metastable sta
The exponent of the power depends on the ‘‘depth’’ of t
initial quench, saturating to limiting values for shallow an
deep quenches. It would be of interest to identify and follo
more closely further characteristics of this nonlinear gla
system, to understand how nonlinearity and length sc
competition can induce ‘‘disorder.’’ In particular, studies
the possible effective thermodynamics of the vortex moti
or of variations in the frozen state as a function of the syst
parameters, are interesting topics for future work.
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